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General expressions are obtained for the temperature coefficients of resis- 
tance of a two-component system on the basis of the theory of effective media. 
Conditions are analyzed for compensation for the coefficient of thick-film re- 
sistors by the addition of a semiconductor. 

The materials of modern resistors, including both thin- and thick-film materials and 
bulk composite materials, are heterogeneous systems in which the two main phases are a di- 
electric phase (silicon dioxide, glasses, polymers) and a conducting phase (silicides of 
metals, ruthenates, noble metals, carbon). The concentration behavior of the resistance 
of such systems includes a region in which there is an abrupt, thresholdlike change in re- 
sistance attributable to a concentration-induced "phase transition" connected with current 
effects. Analysis of the temperature-concentration behavior of such systems is very impor- 
tant regarding the problem of significantly reducing the temperature coefficient of resis- 
tance (TCR) of resistors, i.e., in connection with the development of temperature-compen- 
sated resistive materials [i]. 

Here, we derive a general expression for the TCR of two-component mixtures in an effec- 
tive medium approximation and we analyze the conditions for compensation of the TCR. As 
an example, we use a low-resistance ruthenium-containing cermet with additions of a semi- 
conductor. This material is to be used in thick-film resistors. 

The electrophysical parameters of heterogeneous materials will be examined within the 
framework of the theory of effective media [2-4]. In this theory it is assumed that the 
macroscopic particles of a given phase are "immersed" in a homogeneous effective medium. 
In this medium, the self-consistent values of the specific parameters coincide with their 
actual values for the composite as a whole. Such an approximation has been used success- 
fully to describe the properties of heterogeneous composites [5-8]. 

In the effective medium approximation, the electrical resistivity p of a two-component 
mixture of materials with resistivities Pl and P2 has the form 

1 (P+ Jr R), R -- (P~.+ 4x=x=oxP=) 1/2 (1) 
P = 2x-----~- ' ' 

where p+ = pl(Xc - x 2) +_ P2(Xc - xl); x I + x 2 = i; Xc = i - x c. Equation (i) is essentially 
the Landauer-Bruggeman formula [2] or Odelevskii formula for statistical mixtures [3] and 
is a direct consequence of the effective medium approximation [4, 5].* For the case of 
clearly heterogeneous mixtures 

(xc - -  xl)q 
P~ , x l  < xc, 

Xe 

P = ~ x~ / (PIP.2) s , xl = Xc, 

Z 
Pl , xl > xr 

(xl - -  x J  

* E q u a t i o n  ( 1 )  i s  v a l i d  f o r  t h e  e a s e  o f  low f r e q u e n c i e s :  f << f o r ;  a t  f r e q u e n c i e s  f Z f c r ,  
a l l o w a n c e  s h o u l d  be  made f o r  t h e  h i g h - f r e q u e n c y  t h r e s h o l d  i n c r e a s e  i n  c o n d u c t i v i t y  due  t o  t h e  
c o u p l i n g  o f  t h e  a c t i v e  and  c a p a c i t i v e  c o m p o n e n t s  o f  t h e  c u r r e n t  [ 6 ] .  F o r  e x a m p l e ,  i f  P2 >> 
Pl  ~ 1 f l .cm a n d  e r2  ~ 10 ,  t h e n  f e r  = ( 2 ~ E r 2 C 0 P l ) - 1  ~ 2"1011  Hz. I f  P2 ~ 1 0 1 ~  ~ -cm >> 
Pl  ~ 10s ~.cm (semiconductor), then fcr ~ 2 MHz. 
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Fig. i. Dependence of the volume fraction of the compensa- 
ting addition of semiconductor x2* on the TKp ratio of the 
semiconductor and cermet (-TKp2/TKpz) at the values v = i 
(i), 10 -I (2), 10 -2 (3), 10 -3 (4), 10 -4 (5), and 10 -5 (6). 

Fig. 2. Temperature dependences of the ratio TKp/TKpl at 
values of A = i000 ppM.K -I, B = i000 K and v 0 = 10 -4 (i), 
I0 -3 (2 ) ,  i0 -2 (3 ) ,  0 . i  (4 ) ,  0.2 (5 ) ,  0.4 (6 ) ,  0.6 (7 ) ,  
l (8). '~ 

q = t =  1, s =  1/2. ( 2 a )  

These equations make clear the physical significance of the critical concentration (current 
threshold) Xc: with an increase in the concentration of the "metal" i inside the "dielec- 
tric" 2 to xz = x c, the effective resistivity p decreases sharply to "zero" - to the value 
~91 << P2, i.e., the system begins to conduct current through the metal. In short, a con- 
centration-induced dielectric-metal phase transition takes place. With an increase in the 
concentration of the "dielectric" 2 inside the "metal" i at x I = x c (x 2 = Xc), the effective 
resistivity p increases sharply to "infinity" - to the value ~P2 >> 9z, i.e., a metal-dielec- 
tric phase transition takes place. 

In a narrow concentration region near the threshold Ixz - Xcl ~ 0.i, the critical in- 
dices q, t, and s may differ from the values (2a) found by the effective medium approxima- 
tion (see [6, 7]). However, the values found in a broad concentration range are obviously 
quite suitable [8, 9]. 

The effective medium approximation has already been used to analyze the thermal behav- 
ior of the resistance of thick-film resistors [ii]. 

With allowance for the temperature dependence of the resistivities of the components 
p1(T) and p2(T), we obtain the following from (i) for thetemperature coefficient of resis- 

1 d 9 ~::~ 
tance of the mixture K=TKp=--~ 

p dT 

1 1 9_ 
K =  2 (KI-~ K2) -}- ~ (K] - -  K2) R ' ( 3 )  

where Kz, 2 = TKpz,2.* For clearly heterogeneous mixtures (P2 >> 0z), we express TKp as fol- 
lows on the basis of (2) 

*It is easily shown that the corrections for the bulk concentrations of the components due 
to the different coefficients of cubical expansion of materials 1 and 2 do not exceed ~10 -3 
in the temperature range T - T o ~ i00 K. However, these corrections may turn out to be sub- 
stantial in certain special cases. 
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I - -  
K =  I @ (K~ + K~)' xl = x~, ( 4 ) 

i t K1, x~>xc.  

Thus, it is evident from (4) and (2) that for clearly heterogeneous mixtures (for exam- 
ple, mixtures in which medium i is a "metal," with K I > 0, and medium 2 is a "dielectric," 
with K 2 < 0), the TCR can be compensated for through the concentration. This provides a 
natural explanation for the familiar U-shaped relation p(T) (with a minimum) of materials 
used in thick-film resistors [i0]. 

Equation (3) leads to the following compensation condition with K = 0: 

p_ KI+ K~ 
R = K2--KI (5) 

This condition is the equation for the optimum concentration of one of the components 
of a two-phase system in which the material is temperature-compensated at the given tempera- 
ture. Its solution: 

1 (K~ + K~) PlP~ - -  2K, K2 (p~xe --l-- p~Te) 4- IK1 + K~I-V'E 

x~ = ~ -  (K~ + K~) p,p~ - -  K,K, (p~ --I-- P~) ' (6)  

D = PlP~ [(KI -- K~.) 2 plp~2 -- 4KIK2 (pl -- p~) 2 x,xA 

(with a + sign for K I > IK21 and a - sign for K I < IK21). 

It is evident from (6) that the optimum concentration is a function of the ratios u = 
Pl/P2 and • = -K=/KI. Figure i shows the dependence of the optimum concentration x2* on • 
with different values of v (here, we took x c = 1/3, ~c = 2/3).* 

For clearly heterogeneous low-resistance thick-film resistors, approximate relations 
(4) lead to the compensation condition K I = 0 (at x I > Xc), i.e., the conducting phase should 
have a zero TCR. This criterion is widely used to select conducting materials for low-resis- 
tance thick-film resistors, with special conditions being adopted for the temperature compen- 
sation Of the conducting phase [Ii]. However, this approximate criterion is completely in- 
adequate for obtaining a temperature-compensated material. In fact, at KI = 0, exact rela- 
tion (6) leads to the natural result x2* = 0, i.e., if the conducting material is temperature- 
compensated, then it makes no sense to dilute it with the dielectric. On the other hand, 
the use of a temperature-compensated conducting phase (lead rhodate and barium rhodate) will 
lead to significant changes in the TCR of a resistive material with variation of the concen- 
tration and type of dielectric phase (lead-barium borosilicate glasses) [ii]. These results 
are easily explained on the basis of the above-derived relations with allowance for the con- 
tribution of the dielectric phase to the resistivity of the mixture at x I > x c. The correc- 
tions to Eq. (2) and (4) for clearly heterogeneous mixtures (p2 >> Pl) at x I > x c are of the 
order ~Pl/P2 and increase as the current threshold is approached from the right [Pl/P2 << 
(xl - xc)2/xlx=]: 

x~ [ P~ x~x~ ]. 
P ~ Pl - -  1 - -  - K g K1 - -  (K1 - -  K2) Pi XlX~ 

X1--Xe 02 , (X1--Xc) z ' P~ (X1--Xc) 2 ' 

w h i l e  t h e  optimum c o n c e n t r a t i o n  (TKp = O) i s  s h i f t e d  even  more - ~ ( p l / p 2 )  1/2 [ s e e  ( 6 ) ] :  

X ~ , ~ , X  c. ]K1--~K~! (Xc~c)l/2( Pl /1/2 (Kl =/:= 0, K 2 < 0 ) .  

Thus the concentration and properties of the dielectric phase have a significant effect on 
the degree of temperature compensation of low-resistance resistive materials based on clearly 
heterogeneous mixtures. 

*The current threshold x c depends heavily on the granulometric composition of the powders, 
the manufacturing technology, and the structure of the material and may vary broadly [6, 7]. 
It is best to determine x c empirically from the concentration relation p(x I) and to not con- 
sider it a "theoretical" parameter. 
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TABLE i. Levels of Parameters of the Model 

A, ppM 
B , K  
~0 
T, ~  
T o, ~ 

500, 1000, 1500 
250, 500, 1000, 2000, 4000 
10-a; 10-a; 10-e; 0,1; 0,2; 0,4; 0,6; 0,8; 1 
--100, --500, 0, 25, 50, 100, 150, 200, 250, 300 
25 

For homogeneous (at the given temperature) mixtures 91 = 92 (but TKpl ~ TK92) , we find 
from (3) that the temperature coefficient of resistance is additive 

K ": Klx, + K2x2, ( 7 ) 

as actually occurs and, more generally, is reflected in Lichtenecker's formula [12]. Here, 
the optimum concentration (for temperature compensation at the same temperature) x2* = KI/ 
(K I - K2). This ratio is used to develop dielectrics which are temperature-compensated with 
respect to the TCR [13]. 

As an example of the specific use of the method of temperature compensation analyzed 
above, we will examine low-resistance ruthenium-containing metal-ceramic thick-film resis- 
tors characterized by a relatively large positive TCR = +(500-1500).10 -6 K -l [14]. A re- 
sistive material which was proposed in [15] is a metal-ceramic based on ruthenium dioxide. 
In order to reduce the TCR of this material, investigators added a semiconducting compound 
(La0.3sCa0.ss)(Co0.3Mn0.7)O 3 with a relatively low negative TCR. We will examine this metal- 
ceramic material as a quasihomogeneous medium, with a resistivity Pl, which has been modi- 
fied by the introduction of a semiconducting phase with the resistivity P2.* 

The problem then reduces to analysis of the TCR of a two-component heterogeneous sys- 
tem.% To analyze the temperature dependence of the TCR, it is necessary to concretize the 
temperature dependences of 01 and 92. For the cermet, we take 

Pl = Plo [1 + A (T - -  To) ], ( 8 )  

where 910 is the resistivity of the cermet at T = T O and A is a constant. Then K I = A/[I + 
A(T - To)] (KIIT=T0 = A). As usual, for the semiconductor we take 

9~ = 920 exp [B (T -~ - -  T 7  ~)], ( 9 )  

where B = AE/2k; E is the activation energy of conduction for the semiconductor; k is the 
Boltzmann constant; 920 = P2IT=T 0. Accordingly, K 2 =-B/T 2. The ratio of the resistivities 

v = P_L __-- Vo [ 1 + ,4 (T - -  To) ] exp [ - -  B (T -~ - -  T 7  ~)], ( 1 0 )  
92 

where v o = 91o/9=o. Thus, with allowance for (8)-(i0), (3) gives a mathematical model of 
the TCR of a cermet with additions of a semiconductor. The parameters of the model are the 
volume fraction of the semiconductor x2, the ratio of the conductivities v 0 at T = To, the 
constants A and B determining the TCR of the cermet and semiconductor, and the temperature 
T. We analyzed the model on a computer at the levels of the parameters shown in Table i. 
The TCR compensation was keyed to T = T o . 

The values of x2* were calculated for each combination of levels (we took x c = 1/3). 

Figures 2, 3, and 4 show the temperature dependences for several combinations of param- 
eter levels. 

It follows from the data that the semiconductor additions can be used to markedly (by 
a factor greater than two) decrease the positive TCR of a cermet in the temperature range 
from-~0 to 200~ 

*The characteristic dimensions of the discontinuities in the cermet were i00-i000 nm. The 
inclusions in the semiconductor had dimensions zl0 ~m. 
%This system was regarded as a matrix system in [15]. The "matrix" properties are easily 
obtained from the relations in the present study if the concentration of one of the compon- 
ents is low. 
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Fig. 3. Temperature dependences of the ratio TKp/TKpI at the 
values v0 = i, B = i000 K and A = 500 (I), i000 (2), and 1500 
ppM.K -I (3). 

Fig. 4 Temperature dependences of the ratio TKp/TKpl at the 
values v 0 = i; A = i000 ppM.K -I and B = 250 (i), 500 (2), 
i000 (3), 2000 (4), and 4000 K (5). 

It should be noted that we examined pointwise temperature compensation of a resistive 
material: K(T 0) = 0. In a number of cases, it is of interest to select compositions such 
that the TCR deviates as little as possible from zero in terms of its mean-square value 
(i.e., regardless of the sign) within a prescribed temperature interval (TI, T2). Then the 
criterion for selection of the concentration of the compensating addition has the form 

i T~ 
K 2 (T) dT -+ rain, (ii) 

T2 - -  T1 T~ x~ 

where K(T, x 2) is given by Eq. (3) (or an appropriate simplified formula).* Thus, for slight- 
ly heterogeneous mixtures for which Lichtenecker's formula (7) is valid, we find from condi- 
tion (ii) that x2 ~ = <KI(K I - K2)>/<(K l - K2)2> [the symbol <> denotes averaging of tempera- 
ture in the interval (T1, T2)]. It is evident that this optimum concentration of compensating 
addition differs quantitatively from the case of pointwise temperature compensation (x2 ~ = 
KI(T0)/[KI(T0) - K2(T0)]). 

Let us illustrate the difference between pointwise and interval compensation by using 
the example of Lichtenecker's formula (7). Let the high TCR of a cermet KI(T 0) = A = 1000. 
10 -6 K -I require compensation by the addition of a semiconductor with B = 500 K. In the 
case of pointwise compensation at room temperature To, the optimum concentration of the com- 
pensating addition x2~ = 15.27o, and the TCR of the mixture deviates little from zero in the 
temperature range from-30 K to room temperature (see Fig. 4, for example). In the working 
temperature range, the rms value of the TCR turns out to be <K2> I/2 = 700.10 -6 K -~. In the 
case of interval compensation (ii) throughout the working range T2 - TI = 200 K, the concen- 
tration of the compensating addition x2 * = 14.37o, while the minimum rms value of the TCR 
throughout the interval 

KZbl/2= [ < K~>< K~>--< KIK2 ) 2 ]~/2 ,~ 250-10-6K -I < m~. [ < (K1--K2) 2 > J 
Finally, along with temperature compensation, it is often important for a resistive 

material that the resistivity be within a prescribed range of the nominal value. In this 

*If the actual amount of reduction in the TCR is different in different parts of the tempera- 
1 T~ 

ture interval (Ti, T2), then it is possible to introduce a weight function p(T), T~..--TI .I p(T) 
T, 

dT=l into (ii). 
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case, system (I) and (3) (with pointwise compensation) or (I) and (Ii) (with interval com- 
pensation) determines the choice of initial materials (pz,2(T)) and their optimum ratio 
(xl,2"). 

NOTATION 

p, electrical resistivity of the material; T, temperature; K, Kz, K2, temperature co- 
efficients of resistance of the heterogeneous material and the components i and 2; xi,2, 
volume concentrations of the components; Xc, ~c, critical concentrations of the conducting 
and nonconducting phases; v, ratio of the resistivities of the conducting and nonconducting 
phases; A, TCR of the cermet at room temperature To; B, activation constant of semiconductor 
conduction. 
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